185 research outputs found

    Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.

    Get PDF
    The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost

    Synchronization, oscillations, and 1/f noise in networks of spiking neurons

    Get PDF
    We investigate a model for neural activity that generates long range temporal correlations, 1/ f noise, and oscillations in global activity. The model consists of a two-dimensional sheet of leaky integrate-and- fire neurons with feedback connectivity consisting of local excitation and surround inhibition. Each neuron is independently driven by homogeneous external noise. Spontaneous symmetry breaking occurs, resulting in the formation of "hotspots" of activity in the network. These localized patterns of excitation appear as clusters that coalesce, disintegrate, or fluctuate in size while simultaneously moving in a random walk constrained by the interaction with other clusters. The emergent cross-correlation functions have a dual structure, with a sharp peak around zero on top of a much broader hill. The power spectrum associated with single units shows a 1/ f decay for small frequencies and is flat at higher frequencies, while the power spectrum of the spiking activity averaged over many cells-equivalent to the local field potential-shows no 1/ f decay but a prominent peak around 40 Hz

    Optimal Population Codes for Space: Grid Cells Outperform Place Cells

    Get PDF
    Rodents use two distinct neuronal coordinate systems to estimate their position: place fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells spike at only one particular spatial location, grid cells fire at multiple sites that correspond to the points of an imaginary hexagonal lattice. We study how to best construct place and grid codes, taking the probabilistic nature of neural spiking into account. Which spatial encoding properties of individual neurons confer the highest resolution when decoding the animal’s position from the neuronal population response? A priori, estimating a spatial position from a grid code could be ambiguous, as regular periodic lattices possess translational symmetry. The solution to this problem requires lattices for grid cells with different spacings; the spatial resolution crucially depends on choosing the right ratios of these spacings across the population. We compute the expected error in estimating the position in both the asymptotic limit, using Fisher information, and for low spike counts, using maximum likelihood estimation. Achieving high spatial resolution and covering a large range of space in a grid code leads to a trade-off: the best grid code for spatial resolution is built of nested modules with different spatial periods, one inside the other, whereas maximizing the spatial range requires distinct spatial periods that are pairwisely incommensurate. Optimizing the spatial resolution predicts two grid cell properties that have been experimentally observed. First, short lattice spacings should outnumber long lattice spacings. Second, the grid code should be self-similar across different lattice spacings, so that the grid field always covers a fixed fraction of the lattice period. If these conditions are satisfied and the spatial “tuning curves” for each neuron span the same range of firing rates, then the resolution of the grid code easily exceeds that of the best possible place code with the same number of neurons

    Representation of acoustic communication signals by insect auditory receptor neurons

    Get PDF
    Despite their simple auditory systems, some insect species recognize certain temporal aspects of acoustic stimuli with an acuity equal to that of vertebrates; however, the underlying neural mechanisms and coding schemes are only partially understood. In this study, we analyze the response characteristics of the peripheral auditory system of grasshoppers with special emphasis on the representation of species-specific communication signals. We use both natural calling songs and artificial random stimuli designed to focus on two low-order statistical properties of the songs: their typical time scales and the distribution of their modulation amplitudes. Based on stimulus reconstruction techniques and quantified within an information-theoretic framework, our data show that artificial stimuli with typical time scales of >40 msec can be read from single spike trains with high accuracy. Faster stimulus variations can be reconstructed only for behaviorally relevant amplitude distributions. The highest rates of information transmission (180 bits/sec) and the highest coding efficiencies (40%) are obtained for stimuli that capture both the time scales and amplitude distributions of natural songs. Use of multiple spike trains significantly improves the reconstruction of stimuli that vary on time scales <40 msec or feature amplitude distributions as occur when several grasshopper songs overlap. Signal-to-noise ratios obtained from the reconstructions of natural songs do not exceed those obtained from artificial stimuli with the same low-order statistical properties. We conclude that auditory receptor neurons are optimized to extract both the time scales and the amplitude distribution of natural songs. They are not optimized, however, to extract higher-order statistical properties of the song-specific rhythmic patterns

    Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    Get PDF
    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation

    A physiologically inspired model for global remapping in the hippocampus

    Get PDF
    Europe PMC is an archive of life sciences journal literature., A physiologically inspired model for global remapping in the hippocampus

    Dynamic Pattern Formation Leads to 1/f Noise in Neural Populations

    Get PDF
    We present a generic model that generates long-range (power-law) temporal correlations, 1/f noise, and fractal signals in the activity of neural populations. The model consists of a two-dimensional sheet of pulse coupled nonlinear oscillators (neurons) driven by spatially and temporally uncorrelated external noise. The system spontaneously breaks the translational symmetry, generating a metastable quasihexagonal pattern of high activity clusters. Fluctuations in the spatial pattern cause these clusters to diffuse. The macroscopic dynamics (diffusion of clusters) translate into 1/f power spectra and fractal (power-law) pulse distributions on the microscopic scale of a single unit

    Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments

    Get PDF
    As a rat moves, grid cells in its entorhinal cortex (EC) discharge at multiple locations of the external world, and the firing fields of each grid cell span a hexagonal lattice. For movements on linear tracks, spikes tend to occur at successively earlier phases of the theta-band filtered local field potential during the traversal of a firing field - a phenomenon termed phase precession. The complex movement patterns observed in two-dimensional (2D) open-field environments may fundamentally alter phase precession. To study this question at the behaviorally relevant single-run level, we analyzed EC spike patterns as a function of the distance traveled by the rat along each trajectory. This analysis revealed that cells across all EC layers fire spikes that phase-precess;indeed, the rate and extent of phase precession were the same, only the correlation between spike phase and path length was weaker in EC layer III. Both slope and correlation of phase precession were surprisingly similar on linear tracks and in 2D open-field environments despite strong differences in the movement statistics, including running speed. While the phase-precession slope did not correlate with the average running speed, it did depend on specific properties of the animal's path. The longer a curving path through a grid-field in a 2D environment, the shallower was the rate of phase precession, while runs that grazed a grid field tangentially led to a steeper phase-precession slope than runs through the field center. Oscillatory interference models for grid cells do not reproduce the observed phenomena
    corecore